Package: lda 1.5.2

lda: Collapsed Gibbs Sampling Methods for Topic Models

Implements latent Dirichlet allocation (LDA) and related models. This includes (but is not limited to) sLDA, corrLDA, and the mixed-membership stochastic blockmodel. Inference for all of these models is implemented via a fast collapsed Gibbs sampler written in C. Utility functions for reading/writing data typically used in topic models, as well as tools for examining posterior distributions are also included.

Authors:Jonathan Chang

lda_1.5.2.tar.gz
lda_1.5.2.zip(r-4.5)lda_1.5.2.zip(r-4.4)lda_1.5.2.zip(r-4.3)
lda_1.5.2.tgz(r-4.4-x86_64)lda_1.5.2.tgz(r-4.4-arm64)lda_1.5.2.tgz(r-4.3-x86_64)lda_1.5.2.tgz(r-4.3-arm64)
lda_1.5.2.tar.gz(r-4.5-noble)lda_1.5.2.tar.gz(r-4.4-noble)
lda_1.5.2.tgz(r-4.4-emscripten)lda_1.5.2.tgz(r-4.3-emscripten)
lda.pdf |lda.html
lda/json (API)

# Install 'lda' in R:
install.packages('lda', repos = c('https://solivella.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/solivella/lda/issues

Datasets:

On CRAN:

7.56 score 11 packages 524 scripts 4.2k downloads 15 mentions 22 exports 0 dependencies

Last updated 7 months agofrom:62c5e3a614. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64WARNINGNov 04 2024
R-4.5-linux-x86_64WARNINGNov 04 2024
R-4.4-win-x86_64WARNINGNov 04 2024
R-4.4-mac-x86_64WARNINGNov 04 2024
R-4.4-mac-aarch64WARNINGNov 04 2024
R-4.3-win-x86_64WARNINGNov 04 2024
R-4.3-mac-x86_64WARNINGNov 04 2024
R-4.3-mac-aarch64WARNINGNov 04 2024

Exports:concatenate.documentsdocument.lengthsfilter.wordslda.collapsed.gibbs.samplerlda.cvb0lexicalizelinks.as.edgelistmmsb.collapsed.gibbs.samplernubbi.collapsed.gibbs.samplerpredictive.distributionpredictive.link.probabilityread.documentsread.vocabrtm.collapsed.gibbs.samplerrtm.emshift.word.indicesslda.emslda.predictslda.predict.docsumstop.topic.documentstop.topic.wordsword.counts

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
Collapsed Gibbs Sampling Methods for Topic Modelslda-package lda
A subset of the Cora dataset of scientific documents.cora cora.cites cora.documents cora.titles cora.vocab
Functions to manipulate text corpora in LDA format.concatenate.documents filter.words shift.word.indices
Functions to Fit LDA-type modelslda.collapsed.gibbs.sampler lda.cvb0 mmsb.collapsed.gibbs.sampler slda.em
Generate LDA Documents from Raw Textlexicalize
Convert a set of links keyed on source to a single list of edges.links.as.edgelist
A collection of newsgroup messages with classes.newsgroup newsgroup.label.map newsgroup.test.documents newsgroup.test.labels newsgroup.train.documents newsgroup.train.labels newsgroup.vocab
Collapsed Gibbs Sampling for the Networks Uncovered By Bayesian Inference (NUBBI) Model.nubbi.collapsed.gibbs.sampler
A collection of political blogs with ratings.poliblog poliblog.documents poliblog.ratings poliblog.vocab
Compute predictive distributions for fitted LDA-type models.predictive.distribution
Use the RTM to predict whether a link exists between two documents.predictive.link.probability
Read LDA-formatted Document and Vocabulary Filesread.documents read.vocab
Collapsed Gibbs Sampling for the Relational Topic Model (RTM).rtm.collapsed.gibbs.sampler rtm.em
Sampson monk datasampson
Predict the response variable of documents using an sLDA model.slda.predict slda.predict.docsums
Get the Top Words and Documents in Each Topictop.topic.documents top.topic.words
Compute Summary Statistics of a Corpusdocument.lengths word.counts